Nanocompósito a base de hidróxido duplo lamelar em reações de Suzuki e borilação na síntese de cernes para corantes DSSC

Matheus Lopes Modena (IC)¹, Joice Florenço Bomfim (PG)², Luiz Fernando Brum Malta (PQ)¹, Jaqueline Dias Senra (PQ)^{2*}

jaqueline.senra@uerj.br

¹ Instituto de Química, Universidade Federal do Rio de Janeiro; ²Instituto de Química, Universidade do Estado do Rio de Janeiro

Palavras-chave: Hidróxido duplo lamelar, ciclodextrina, paládio, nanoparticulas, catalisador organometálico.

Introdução

As sínteses de compostos heterobiarílicos ainda são desafiadoras, pois o heterociclo pode envenenar o catalisador de acoplamento e dificultar a obtenção da eficiência e escopo do método. A síntese de ariltiofenos e de interesse para células solares sensibilizadas por corante (DSSC), com ênfase nas arquiteturas D-π-A que facilitam a separação de cargas na excitação [1,2]. Reações de acoplamento cruzado para síntese de 2-aril tiofenos podem ser realizadas em condições brandas e em baixa quantidade de catalisador. O presente trabalho concentra-se na realização do processo tandem borilação -Suzuki-Miyaura utilizando nanocompósito de hidróxido duplo lamelar (HDL) de Cu/Al e nanopartículas de Pd estabilizadas por βciclodextrina.

Resultados e Discussão

O compósito LDH/Pd5 de hidroxido duplo lamelar de preparado usando N,N-dimetilformamida como solvente e Na₂PdCl₄ como precursor de Pd para a avaliação catalítica em acoplamentos cruzados catalisados por Pd/Cu visando a preparação de aril tiofenos. As atividades do nanocompósito foram avaliadas na reação de Suzuki-Miyaura em mistura água:etanol 1;1, sob baixas quantidades de Pd (0,5 mol%) a 80°C por 24h (Tabela 1). Rendimentos entre 38% e 99% foram alcançados para 2-fenil tiofeno e 2(o-metoxi)fenil tiofeno (entradas 1 e 8). Este mesmo nanocompósito foi reciclado em até três ensaios sem perda de atividade catalítica. Um teste exploratorio visando uma estratégia one-pot de borilação/Suzuki-Miyaura (Tabela 2) indicou que a borilação de Miyaura foi afetada pelas fases coexistentes de malaquita e espertiniita no nanocompósito. De forma geral o processo tandem foi afetado pelo binómio temperatura-mistura solvente (entradas 4 e 5 versus entradas 1-3).

Tabela 1	.Testes	Catalíticos	reação	de Suzuki

	1. Testes Cataliticos reação de HDL/ Pd (0,5 mol%	6) 6
	+ Ar-B(OH) ₂ Base, H ₂ O/EtOH, reflux	Ar
Entrada	Ácidos aril borônicos	Rendimento
		(%)
1	Ác. Fenilborônico	>99
2	Ác. 4-Fluor-Fenilborônico	>99
3	Ác. 9,9-dimetil-9H-Fenilborônico	65
4	Ác. 9,9-dimetil-9H-Fenilborônico	77 ^a
5	Ác. 9,9-dimetil-9H-Fenilborônico	71 ^b
6	Ác. 4-vinil Fenilborônico	78
7	Ác. 3-Acrilamida-Fenilborônico	60
8	Ác. 2-metoxi-fenilborônico	38
9	Ác. naftalenoborônico	90

Rendimentos foram determinados por GC-MS. ª Reação com 1,0mol% de Pd. ^b Reação com 2 eq K₂CO_{3.}

Tabela	2.	Síntese	de	2-feniltiofeno	tandem
borilação-reação de Suzuki					

	$\frac{\text{Cu/Al LDH}}{\text{Na}_2\text{PdCl}_4, \text{CH}_3\text{CN:H}_2\text{C}}$		LDH/ Pd5 K ₂ CO ₃ , H ₂ O:Etr T(°C), t(h)	OH, S
Entrada	Solvente	K ₂ CO ₃ (eq)	T(°C)	Rendimento
				(%) ¹
1	H ₂ O:EtOH	1	25	0
2	H ₂ O:EtOH	3	25	0ª
3	H ₂ O:EtOH	1	80	0
4	H ₂ O:CH ₃ CN	1	100	67
5	H ₂ O:CH ₃ CN	1	100	89 ^b

¹ Condições reação Suzuki: 0.5 mol% Pd, 1 eq. K₂CO₃, H₂O:EtOH 1:1. ^a tempo de reação= 24h. ^b tempo de reação= 8h.

Conclusões

A atividade catalítica é atribuída principalmente aos nanocompósitos Cu-Al LDHs contendo CDs, o que ocorre como resultado da desprotonação/adsorção de ácido fenilborônico, transmetalação facilitada por sítios hidroxila de superfície do HDL, complexação de substrato por β-CDs e espécies ativas de Cu(II) solúveis a partir da matriz lamelar.

Agradecimentos

CAPES, CNPq, FAPERJ.

¹Chen, Z; Li, F e Huang, C, Curr Org Chem. 2007, 11, Issue 14, pp. 1241 - 1258.

²Fuse, S., 2017. J Synth Org Chem. 2017, Volume 75, Issue 9, pp. 941-954